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a b s t r a c t

A global description of discontinuous functions is introduced in this paper. By expressing a
discontinuous function as the sum of a smooth function and a correction term determined
by jump conditions, we turn the unknown function from a discontinuous one into a suffi-
ciently smooth one when solving a differential equation. Spectral schemes are developed
based on this concept with the intention of eliminating or reducing the Gibbs oscillation.
Finite difference schemes are also constructed as an alternative of the current immersed
interface methods. Both spectral and finite difference schemes are tested on one- and
two-dimensional cases.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

There has been much research work concerning the accuracy across the boundary since Peskin first developed the im-
mersed boundary (IB) method [4]. The original version of the IB method spreads singular sources to adjacent grids with a
discrete delta function. This kind of treatment smears the jump of function value and/or its derivatives across the interface
and results in first-order accuracy. In order to overcome this disadvantage, Lai and Peskin proposed a formally second-order-
accurate IB method [6]. A similar scheme with formal second-order accuracy [7] was developed afterwards and applied to
sufficiently smooth problems to achieve practical second-order accuracy. It is also shown in [8–10] that high-order accuracy
can be achieved using the IB method for some other smooth problems. However, as addressed in literatures, the utilization of
discrete delta function results in the lower order of accuracy for general cases [20,23,24].

The immersed interface method (IIM), originally developed for elliptic equations by LeVeque and Li [20], shares the same
concept as the IB method by using fixed Cartesian grids and treating boundaries as singular sources but uses another ap-
proach to deal with the source term. The IIM considers the integral property of Dirac delta function and represents the effect
of singular sources as a jump of function value and/or its derivatives, while the jump conditions can be derived from the
source term together with the differential equation. As an example, Xu and Wang [21] shown that jump conditions of at least
up to third-order spatial derivatives could be obtained for the incompressible Navier–Stokes equations. The IIM can easily
achieve high-order (2nd or higher) accuracy by making modifications of standard finite difference schemes. Various finite
difference schemes [20,22,23,25–29] have been constructed based on the generalized Taylor expansion, which takes discon-
tinuities into account, or through the matched polynomial interpolation. The IIM has also been incorporated with the finite
volume method [31] and the finite element method [30].
. All rights reserved.
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The IB and IIM have been widely applied to flow field simulations including cardiovascular physiology [4,12], swimming
aquatic animals [13,14], multiphase flows [15,16,24], engine modeling [17,18], aerodynamic problems [5,6,11,19] and so
forth. In the field of computational fluid dynamics, the spectral methods have been attracting persistent research interests
for some extraordinary advantages [1–3,32–35]. However, the application areas of spectral methods are limited due to the
strict requirement of the simplicity of computational domain and the smoothness of the solution. The IB/IIM simplifies the
computational domain to regular geometries such as rectangles in two-dimensional cases and cuboids in three-dimensional
cases but, at the same time, brings unsmoothness or even discontinuity across the boundaries immersed in the fluid. There
have been some efforts to incorporate the IB method to the spectral methods [5,38] but the overshooting phenomenon and
spatial oscillations, known as the Gibbs phenomenon, remains unsolved. Some other authors [39–41] endeavored to use spec-
tral methods with volume-penalization, a method similar to the IB method in concept, in flow field simulations and encoun-
tered the Gibbs phenomenon as well. The effects of the Gibbs phenomenon in these methods are discussed in [11,38–41].

To the authors’ knowledge, all current IIM methods are based on the local modification of schemes near the interfaces and
little effort has been made to incorporate the IIM with the spectral methods without incurring Gibbs phenomenon. In this
paper, a global description of discontinuous functions is proposed. In our global description, a discontinuous function is rep-
resented as the sum of a smooth function and a correction term only related to jump conditions. This concept turns the un-
known function from a discontinuous function into another smooth function. Thus, the spectral method is possible to be
applied and an alterative approach to construct finite difference schemes is also provided. Although aiming at the simulation
of fluid flow problems, as a preliminary step, the present paper discusses only the elliptic equations just as LeVeque and Li
[20] and Zhong [23] did previously.

In this paper, we first introduce our concept for one-dimensional cases as well as finite difference and spectral implemen-
tation in Section 2. An extension from one-dimensional to higher dimensional cases is presented in Section 3 with an exam-
ple. Section 4 gives the conclusion.
2. One-dimensional cases

2.1. Basic formulation

We begin by introducing a global description of a piecewise smooth function in one-dimensional case. Suppose u(x) is a
piecewise smooth function on the interval [a,b] with a finite jump of function value and/or its derivatives at position x = a.
Thus u(x) can be expressed in a traditional way as:
uðxÞ ¼
f ðxÞ; x 2 ½a;a�
gðxÞ; x 2 ½a; b�

�
ð1Þ
where f(x) and g(x) are C1 functions in their domain of definition. A global description of u(x) for this case is proposed here as
uðxÞ ¼ f ðxÞ þ Hðx� aÞ½gðxÞ � f ðxÞ� ð2Þ
by introducing the unit step function H(x), also referred as the Heaviside function, which is defined as
HðtÞ ¼
0; t < 0
1; t > 0

�
ð3Þ
It should be noticed that the domain of definition of f(x) is extended from [a,a] to [a,b] and the function value of f(x) on
the interval [a,b] is not determined. Thus the term g(x) � f(x) is not unique but depends on how we construct a C1 extension
of f(x). For a more general case with m discontinuous points, (2) reads
uðxÞ ¼ ucðxÞ þ
Xm

j¼1

Hðx� ajÞpjðxÞ ð4Þ
where uc(x) and pj(x) are C1 functions and the symbol aj denotes the jth discontinuous point. It will be shown below that
functions pj(x) must satisfy certain conditions to ensure the smoothness of uc(x) although they are not determined and
are left to be constructed. Taking derivative of (4) with respect to x, we obtain
u0 ¼ u0c þ
Xm

j¼1

½Hðx� ajÞp0jðxÞ þ pjdðx� ajÞ� ð5Þ
where d(x) denotes the Dirac delta function. Noticing that d(x) vanishes when x 6¼ 0, we obtain the expression of the first-
order derivative of u(x) at continuous points
u0ðxÞ ¼ u0cðxÞ þ
Xm

j¼1

½Hðx� ajÞp0jðxÞ�; x 6¼ aj ð6Þ
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When x coincides with one of the discontinuous point al, by integrating (5) from al� to al+ we obtain
½u�jal
¼
R alþ
al�

u0ðxÞdx

¼
R alþ
al�

u0cðxÞdxþ
Pm
j¼1

R alþ
al�

Hðx� ajÞp0jðxÞdxþ
R alþ
al�

pjdðx� ajÞdx
h i

¼ plðalÞ
ð7Þ
where ½u�jal
¼ uðalþÞ � uðal�Þ denotes a jump of function u(x) at x = al. Similarly, the nth order derivative of u(x) can be ob-

tained as
uðnÞ ¼ uðnÞc þ
Xm

j¼1

½Hðx� ajÞpðnÞj ðxÞ�; x 6¼ aj ð8Þ

½uðnÞ�jaj
¼ pðnÞj ðajÞ ð9Þ
Eq. (9) is the constraint for constructing pj(x). It can also be obtained by simply considering the difference between the
right and the left limit of u(n) at discontinuous points. It can also be proved that when substituting x = aj into (8), we obtain
u(n)(aj�) if we define H(0) = 0 and u(n)(aj+) if H(0) = 1. Thus we can still use (8) in numerical computation without encounter-
ing any singularity when the point coincides with one of the discontinuous points.

It should be addressed that a similar idea was introduced by Abarbanel et al. [42] to extract information form an oscil-
latory solution by spectral methods for discontinuous problem, where a saw-tooth function was used as the ‘‘correction
function”.

2.2. Finite difference and spectral collocation schemes

The function u(x) in (4) is usually assumed to be the solution of a differential equation with singular sources. Our strategy
for solving such differential equation is to construct pj(x) which satisfies the jump conditions (9) and then correct the approx-
imation of the derivatives of u(x). A detailed formulation is discussed below.

Let the vectors U(n), P(n) and UðnÞc represent the value of nth order derivative (n P 0) of function uðxÞ;
Pm

j¼1½Hðx� ajÞpðnÞj ðxÞ�
and uc(x), respectively at x = x0, x1, . . . ,xN, the discrete points in finite difference method or collocation points in the spectral
collocation method. According to (8), it is clear that
UðnÞ ¼ UðnÞc þ PðnÞ ð10Þ

Since uc(x) is a C1 function, UðnÞc can be computed from Uc ¼ Uð0Þc in both finite difference method and spectral collocation
method by introducing the nth order derivative matrix D(n):
UðnÞc ¼ DðnÞUc ð11Þ

Substituting (11) into (10) yields
UðnÞ ¼ DðnÞUc þ PðnÞ

¼ DðnÞU� DðnÞPþ PðnÞ
ð12Þ
Eq. (12) gives the approximation of derivatives of a discontinuous function u(x) using its values at discrete point set. It is
noticeable that no modification is made to the derivative matrix and the correction terms (�D(n)P + P(n)) at the right hand
side can be calculated explicitly. Theoretically, the order of accuracy depends only on the order of accuracy of the derivative
matrix, but in most conditions, only lower order jump conditions are available for us to construct the correction function
pj(x) and that may result in a reduction in the order of accuracy. However, a second- or fourth-order-accurate scheme is usu-
ally acceptable for most practical applications.

2.3. Galerkin type method

A direct expansion of the discontinuous function u(x) in Eq. (4) and its derivatives is expected to incur overshoot phenom-
enon near the discontinuous points and excite oscillation all over the whole computational domain, which is known as the
Gibbs phenomenon, so we consider the C1 function uc(x) instead. The nth order (n P 0) derivative of uc(x) is approximated
by a truncated series as:
uðnÞc ðxÞ¼
: uðnÞcN ðxÞ ¼

XN

k¼0

v̂ðnÞk ukðxÞ ð13Þ
where the basis functions are denoted as uk(x). The coefficient v̂ðnÞk for each basis function uk (x) can be determined by
v̂ðnÞk ¼
1
ck

Z b

a
uðnÞc ukwdx ð14Þ
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if the basis functions are orthogonal with respect to some weight w(x), i.e.
Z b

a
ukulwdx ¼ ckdk;l ð15Þ
where ck = const. and dk,l is the Kronecker delta. Thus we obtain an alterative expansion of the discontinuous u(x) and its
derivatives as
uðnÞðxÞ¼: uðnÞN ðxÞ ¼
XN

k¼0

v̂ðnÞk uk þ
Xm

j¼1

Hðx� ajÞpðnÞj ðxÞ ð16Þ
which removes the Gibbs phenomenon. We define the following vectors
bVðnÞ ¼ ðv̂ðnÞ0 ; v̂ðnÞ1 ; . . . ; v̂ðnÞN Þ
T ð17Þ
then, similar to the finite difference method and the spectral collocation method, an nth order derivative matrix bDðnÞ can be
found so that
bVðnÞ ¼ bDðnÞ bV ð18Þ
It should be noticed that appliance of the weighted residual method to (16) induces the following integration term
Z b

a

Xm

j¼1

Hðx� ajÞpðnÞj ðxÞ
( )

uiðxÞdx
For the sake of simplicity, we define
bPðnÞ ¼

R b
a

Pm
j¼1

Hðx� ajÞpðnÞj ðxÞ
( )

u0ðxÞdx

R b
a

Pm
j¼1

Hðx� ajÞpðnÞj ðxÞ
( )

u1ðxÞdx

..

.

R b
a

Pm
j¼1

Hðx� ajÞpðnÞj ðxÞ
( )

uNðxÞdx

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
ð19Þ
Since the correction functions pj(x) are known beforehand, bPðnÞ defined in (19) are known vectors. We then give another form
of (19) which is more appropriate for numerical calculation. The order of integration and summation symbol in (19) can be
exchanged, i.e.
bPðnÞ ¼
Pm

j¼1

R b
a Hðx� ajÞpðnÞj ðxÞu0ðxÞdx

n o
Pm

j¼1

R b
a Hðx� ajÞpðnÞj ðxÞu1ðxÞdx

n o
..
.Pm

j¼1

R b
a Hðx� ajÞpðnÞj ðxÞuNðxÞdx

n o

0BBBBBBB@

1CCCCCCCA ð20Þ
Noticing each integrand vanishes when x < aj, we eliminate the Heaviside functions by adjusting the range of integration.
Thus (19) reads
bPðnÞ ¼
Pm

j¼1

R b
aj

pðnÞj ðxÞu0ðxÞdx
n o

Pm
j¼1

R b
aj

pðnÞj ðxÞu1ðxÞdx
n o

..

.Pm
j¼1

R b
aj

pðnÞj ðxÞuNðxÞdx
n o

0BBBBBBB@

1CCCCCCCA ð21Þ
Then the integration can be evaluated either analytically or through a numerical quadrature.

2.4. Formation of the correction function pj(x)

The correction function pj(x) is expected to satisfy all the jump conditions at the corresponding discontinuous point x = aj.
However, only jump conditions for the lower order derivatives can be acquired for most differential equation(s). In this case,
pj(x) can be constructed as a polynomial. More precisely, if up to lth order jump conditions are known at x = aj, the corre-
sponding pj(x) can be constructed as
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pjðxÞ ¼
Xl

k¼0

½uðkÞ�
k!
ðx� ajÞk ð22Þ
It is assumed implicitly in (22) that higher order derivative jumps are equal to zero.
It should be noted that polynomial is not the only choice. As will be shown in the next section, an exponential form of pj(x)

is chosen to satisfy all the jump conditions for a special case.

2.5. An example for one-dimensional boundary value problems

Solution of a second-order ordinary differential equation with Dirichlet boundary conditions
u00 � u0 ¼ dðxÞ on ð�1;1Þ
uð�1Þ ¼ uð1Þ ¼ 0

�
ð23Þ
using the finite difference/spectral collocation scheme (12) and Galerkin method is introduced in this section. The first two
jump conditions are easily acquired as
½u�j0 ¼ 0
½uð1Þ�j0 ¼ 1 ð24Þ
-1 -0.5 0.5 1

-0.4

-0.3

-0.2

-0.1

Fig. 1. Exact solution of differential Eq. (23).
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Fig. 2. Error of finite difference method for the 1D example with 1st order jump condition.
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At x = 0+ and x = 0�, (23) reads
u00 ¼ u0 ð25Þ
The relation
uðnÞ ¼ uðn�1Þ ð26Þ
at x = 0+ and x = 0� can be obtained by differentiating (25) with respect to x. Thus the jump condition for the present problem
is
½u�j0 ¼ 0
½uðnÞ�j0 ¼ 1; n P 1

ð27Þ
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Fig. 3. Error of finite difference method for the 1D example with 2nd order jump condition.
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Fig. 4. Error of finite difference method for the 1D example with 3rd order jump condition.
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The exact solution of (23) is
u ¼ � e
1þ e

ex þ ðex � 1ÞHðxÞ þ 1
1þ e

ð28Þ
and the plot is shown in Fig. 1.

2.6. Finite difference and spectral collocation method

The finite difference/spectral collocation scheme for this problem is
ðDð2Þ � DÞU ¼ Dð2ÞP� Pð2Þ � DPþ Pð1Þ ð29Þ
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Fig. 5. Error of the Chebyshev collocation method for the 1D example with 1st order jump condition.
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Fig. 6. Error of the Chebyshev collocation method for the 1D example with 2nd order jump condition.
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while the first and last row of the coefficient matrix and the right hand side vector are replaced to represent the boundary
condition. A standard 3-points central finite difference scheme with uniform grid and the Chebyshev collocation method
with Gauss-Lobatto points were used for Eq. (29). The calculation of derivative matrices for the Chebyshev collocation meth-
od can be found in [3]. In Figs. 2–7, the maximum error over all grid points
kENk1 ¼max
i
juðxiÞ � uij ð30Þ
where ui is the computed approximation at the grid point xi and u(xi) is the exact solution, is plotted against the number of
grid points N in log scales, with different orders of jump conditions l, which indicates that jump conditions from [u] to [u(l)]
are given. In this section, the order of jump conditions l is adjusted by constructing an l-degree polynomial as correction
function using (22). Numerical results and the exact solution are compared in Figs. 8–13 with the configurations of
N = 40, l = 1–3. The spatial distributions of error are also plotted for those configurations in Figs. 14–17. It can be observed
N
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Fig. 7. Error of the Chebyshev collocation method for the 1D example with 3rd order jump condition.
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Fig. 8. Numerical solution for the 1D example using finite difference method with N = 40, l = 1.
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Fig. 9. Numerical solution for the 1D example using finite difference method with N = 40, l = 2.
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Fig. 10. Numerical solution for the 1D example using finite difference method with N = 40, l = 3.
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from the above numerical results that the sharp interface is successfully simulated and there is no sign of Gibbs oscillations.
It is implied in some papers that Gibbs oscillation is much more severe if the solution is discontinuous, i.e. with a jump in
function value, and the oscillation can be greatly suppressed even if only the 0th order jump condition is satisfied. As an
example, Abarbanel et al. [42] developed a method to extract information form an oscillatory solution of spectral methods
for discontinuous problem. The concept of that procedure is to find a smooth function and a saw-tooth function (with un-
known jump at an unknown location), the summation of which makes up the solution. Although this method is expected to
satisfy only the 0th order jump condition for general cases, the result represents the piecewise smooth solution rather well.

We then attempt to give a brief explanation of the error oscillations observed in Figs. 2,3,5 and 6 as follows. It can be
proved that the finite difference version of (12) can also be obtained using the generalized Taylor expansion referred in [22]
gðz�mþ1Þ ¼
X1
n¼0

gðnÞðzþ0 Þ
n!

ðzmþ1 � z0Þn þ
Xm

l¼1

X1
n¼0

½gðnÞðzlÞ�
n!

ðzmþ1 � zlÞn ð31Þ
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Fig. 11. Numerical solution for the 1D example using Chebyshev collocation method with N = 40, l = 1.
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Fig. 12. Numerical solution for the 1D example using Chebyshev collocation method with N = 40, l = 2.
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Specially, our scheme is equivalent to LeVeque and Li’s scheme [20] with 1st order jump condition and a corresponding 1-
degree polynomial correction function. The term (zm+1 � zl) in (31), i.e. the distance between the irregular point zm+1 and the
discontinuous point zl does not monotonically decrease with the increase of N, which causes the error oscillation for our fi-
nite difference schemes. The Chebyshev collocation method can be understood as a high-order interpolation method, and
thus the explanation above is also applicable for our Chebyshev collocation schemes. However, it must be addressed that
the error oscillation does not seem to be the necessary consequence of the current global description concept, as will be evi-
denced by our numerical results from Chebyshev-tau method later.

We define the order r for each scheme by applying a power fit to the error data, i.e.
kENk1 ¼ const: � N�r ð32Þ
using least square method. The calculated orders for the above schemes are listed in Table 1. It is seen from the figures and
Table 1 that the order for the finite difference scheme is determined by the order of derivative matrices together with the
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Fig. 13. Numerical solution for the 1D example using Chebyshev collocation method with N = 40, l = 3.
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order of jump condition. As for the spectral method, the error is proportional to 1
NN for smooth problems, so the order is re-

stricted by the order of jump condition. We can construct the correction function as
p1 ¼ ex � 1 ð33Þ
to satisfy all the jump conditions given in (27), thus the Chebyshev collocation scheme recovers the spectral accuracy as
shown in Fig. 18, where the oscillation of error at N > 12 is believed to be caused by round-off errors.
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Fig. 15. Error distribution with N = 40, l = 2.
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Fig. 16. Error distribution with N = 40, l = 3, Chebyshev collocation method.
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2.7. Galerkin type method

It is assumed that solution of differential Eq. (23) has the following form:
u ¼
XN

k¼0

ûkTkðxÞ þ HðxÞp1ðxÞ ð34Þ
where Tk(x) is the kth degree Chebyshev polynomial and p1 is the correction function either in polynomial form (22) or in
exponential function form (33). Application of Galerkin weighted residual method in this problem yields the linear system
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Fig. 17. Error distribution with N = 40, l = 3, finite difference method.

Table 1
Orders of different schemes for the 1D case

Order of jump condition 3-Point central difference Chebyshev spectral

Collocation Tau

1 1.50 1.45 2.11
2 2.00 1.99 3.14
3 2.00 3.90 4.21
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Fig. 18. Error of the Chebyshev collocation method for the 1D example with infinite order jump conditions.
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ðbDð2Þ � bDð1ÞÞbU ¼ bPð1Þ � bPð2Þ ð35Þ
with bU ¼ ðû0; û1; . . . ; ûNÞT as the unknown vector. The matrices bDð2Þ; bDð1Þ and the vectors bPð1Þ, bPð2Þ are defined by (18) and
(19), respectively. The last two rows of (35) are replaced to represent the boundary condition, the same with classical tau
method.
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The decrease of the maximum error kENk1 with the increase of N is illustrated in Figs. 19–22 with jump condition order l
varies from 1 to 3 and l =1. It can be noticed that the oscillations of kENk1 observed in finite difference and Chebyshev col-
location schemes are greatly suppressed even at low order jump condition, and the scheme recovers the exponential con-
vergence rate with infinite order jump condition in Fig. 22 (due to the restriction of machine precision, the maximum
error kENk1 does not continually reduce at N > 14). Comparisons between numerical results at N = 40 and the exact solution
are shown in Figs. 23–26, and Figs. 27–30 give the spatial distribution of error at N = 40, l = 1 � 3 and N = 10, l =1. The orders
of Chebyshev-tau method for this problem with different jump condition orders are calculated and shown in Table 1.

3. Higher dimensional cases

Extending (4) to higher dimension gives
uðx
*
Þ ¼ ucðx

*
Þ þ

Xm

j¼1

HðfjÞpjðx
*
Þ ð36Þ
N
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N

|| ∞
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Fig. 19. Error of the Chebyshev-tau method for the 1D example with 1st order jump condition.
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Fig. 20. Error of the Chebyshev-tau method for the 1D example with 2nd order jump condition.
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Fig. 21. Error of the Chebyshev-tau method for the 1D example with 3rd order jump condition.

N

||E
N
|| ∞

20 40 60 80 100

10-14

10-12

10-10

10-8

10-6

10-4

Fig. 22. Error of the Chebyshev-tau method for the 1D example with infinite order jump condition.
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where fj = 0 represents each discontinuous curve. Thus, it is possible to follow the one-dimensional cases and derive a high-
dimensional version. Another treatment for the discontinuous curves chosen in the current paper is a dimension-by-dimen-
sion manner similar to [23]. More precisely, the derivative onu

oxn
i

at point A is approximated using the values of discrete points

along the line passing point A and parallel to xi axis, which has discontinuous points on condition that it intersects one or
more of the discontinuous curves fj = 0. As an example, we consider a two-dimensional Poisson equation with a singular
source, which is also used by LeVeque and Li [20], and Zhong [23]. The partial differential equation is
uxx þ uyy ¼
Z

C
2dðx� XðsÞÞdðy� YðsÞÞds on X ¼ ½�1;1� � ½�1;1� ð37Þ
where � is the circle x2 þ y2 ¼ 1
4. Dirichlet boundary condition is given according to the exact solution
u ¼
1 if r 6 1=2
1þ lnð2rÞ if r > 1=2

�
ð38Þ
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Fig. 23. Numerical solution for the 1D example using Chebyshev-tau method with N = 40, l = 1.
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Fig. 24. Numerical solution for the 1D example using Chebyshev-tau method with N = 40, l = 2.
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where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. Fig. 31 shows the plot of the exact solution (38). It is derived from the differential equation that [u]jC = 0

and [ou/on]jC = 2.
In the following sections, we use the dimension-by-dimension approach to construct the finite difference and Chebyshev

collocation schemes, and directly use (36) to construct a Chebyshev-tau scheme.

3.1. Finite difference and spectral collocation schemes

We denote the matrix U with its entries ui,j representing the approximation of exact solution u at point (xi, yj) and matrix
PðnÞx with its jth column vector constructed by jump conditions along the line y = yj. More detailedly, we denote the entries of
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Fig. 25. Numerical solution for the 1D example using Chebyshev-tau method with N = 40, l = 3.
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Fig. 26. Numerical solution for the 1D example using Chebyshev-tau method with N = 40, l =1.
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PðnÞx as pðnÞx;ij and then consider an equivalent one-dimensional problem along the line y = yj with discontinuous points x = ak

being the intersections of the line y = yj and the interface �. Since the jump conditions ½uðnÞ�jak
are explicitly known before-

hand, the corresponding correction functions pðnÞk ðxÞ can be formed either using (22) or any other forms. Thus the correspond-
ing jth column vector is constructed as
pðnÞx;ij ¼
X

k

Hðxi � akÞpðnÞk ðxiÞ
n o

ð39Þ
As the extension of one-dimensional formula (12), it is easy to obtain that
Uxx ¼ DxxU� DxxPx þ Pð2Þx ð40Þ



X

Er
ro

r

-1 -0.5 0 0.5 1

5E-05

0

5E-05

Fig. 27. Error distribution with N = 40, l = 1, Chebyshev-tau method.
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Fig. 28. Error distribution with N = 40, l = 2, Chebyshev-tau method.
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Similarly, the y-direction derivative is approximated as
Uyy ¼ UDT
yy � PyDT

yy þ Pð2Þy ð41Þ
with the ith row vector of the matrix PðnÞy representing the jump conditions along the line x = xi and the superscript ‘‘T” denot-
ing the transposition of a matrix. Thus the differential Eq. (37) is discretized as
DxxUþ UDT
yy ¼ DxxPx � Pð2Þx þ PyDT

yy � Pð2Þy ð42Þ
The linear system (42) can be solved by a matrix diagonalization procedure described in [3].
Numerical simulations were carried out using 3-point (in each direction) central different and the Chebyshev collocation

methods with an N � N grid at uniform points and Gauss-Lobatto points, respectively. Again, the accuracy is judged by the
maximum error over all grid points
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Fig. 29. Error distribution with N = 40, l = 3, Chebyshev-tau method.
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kENk1 ¼max
i;j
juðxi; yjÞ � ui;jj ð43Þ
and the definition of order r is the same with the one-dimensional case (32). Figs. 32 and 33 show the calculated kENk1 at
different grid densities. Numerical solution from Chebyshev collocation method is given in Fig. 34, and Fig. 35 shows a slice
from Fig. 34 at x = 0. As shown in these figures, the sharp interface is successfully captured and there is no evidence of Gibbs
oscillations.

In order to examine the convergence behavior, we gave the jump conditions for the 2nd order derivatives and
compared the numerical results, with other computation configurations remaining unchanged. For the sake of
simplicity, the jump conditions for the 2nd order derivatives were obtained directly from the exact solution. The calcu-
lated errors are shown in Figs. 36 and 37 for the finite difference method and the Chebyshev collocation method,
respectively.
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Fig. 31. Exact solution of the 2D example (37).
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Fig. 32. Error of finite difference method for the 2D example with 1st order jump condition.
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The comparison of orders of different schemes with different jump conditions is shown in Table 2. We also give a com-
parison between our present results and those by other authors (LeVeque and Li [20], Zhong [23]) in Table 3. It is seen from
above comparison that present schemes provide acceptable accuracy for discontinuous problems. The satisfaction of higher
order (second-order and above) jump conditions is apparently expected to bring an enhancement of the order of accuracy as
well as a significant damp of the error oscillation. As shown in literature, it is possible to obtain higher order jump conditions
either theoretically [21] or numerically [36].

3.2. Chebyshev-tau scheme

The 1st order jump condition of the differential Eq. (37) can be satisfied in the form of (36) by setting
f ¼ 1

2� r ¼ 1
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and p(x, y) = �2r2 + 1/2, i.e. the solution of (37) was expanded in Chebyshev series as



||E
N

|| ∞

10-7

10-6

10-5

10-4

10-3

10-2

10-1

10

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

N
101 102

Fig. 33. Error of the Chebyshev collocation method for the 2D example with 1st order jump condition.
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Fig. 34. Numerical solution of the 2D example with N = 40, l = 1, Chebyshev collocation method.
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u ¼ H
1
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p� �
�2x2 � 2y2 þ 1

2

� �
þ
XN

i¼0

XN

j¼0

ûijTiðxÞTjðyÞ ð44Þ
After substituting (44) into (37) and then applying the Galerkin weighted residual method, a linear system is acquired
as
ðbDð2Þ bU þ bU bDð2ÞÞij ¼ � 4
p2cicj

Z
S

TiðxÞTjðyÞ
o2p
ox2 wðxÞwðyÞdxdyþ

Z
S

TiðxÞTjðyÞ
o2p
oy2 wðxÞwðyÞdxdy

" #
ð45Þ
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Fig. 35. Comparison between exact solution and numerical solution at line x = 0 with N = 40, l = 1, Chebyshev collocation method.
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Fig. 36. Error of finite difference method for the 2D example with 2nd order jump condition.
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where bU is the unknown matrix with its entries being ûij in (44), w(t) = (1 � t2)�1/2 is the weight function for
Chebyshev spectral methods, ck is the integration constant referred in (15) and S denotes the domain of
integration
S ¼ ðx; yÞjx2 þ y2 <
1
4

� �
A matrix diagonalization procedure to solve the linear system (45) is also provided in [3].
Similarly, the 2nd order jump condition for this example can be satisfied by the selection of f and p(x, y) in (36)

that



N

||E
N
|| ∞

10 1 10 2
10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

Fig. 37. Error of the Chebyshev collocation method for the 2D example with 2nd order jump condition.

Table 2
Orders of different schemes for the 2D case

Order of jump condition Central difference Chebyshev spectral

Collocation Tau

1 1.38 1.36 2.44
2 2.06 2.36 3.61

Table 3
Accuracy comparison of present schemes and some other schemes from literatures [20,23]

40 � 40 Grid 80 � 80 Grid

Discrete d function method [20] 2.6467 � 10�2 1.3204 � 10�2

LeVeque and Li [20] 8.3461 � 10�4 2.4451 � 10�4

Zhong’s method A (2nd order) [23] 1.6339 � 10�3 2.8581 � 10�4

Zhong’s method B (2nd order) [23] 4.4405 � 10�4 9.5040 � 10�5

Zhong’s method C (2nd order) [23] 1.5715 � 10�3 2.5039 � 10�4

Zhong’s method D (3rd order) [23] 4.9529 � 10�4 4.7499 � 10�5

Zhong’s method E (4th order) [23] 1.2215 � 10�4 6.1514 � 10�6

Zhong’s method F (4th order) [23] 1.5521 � 10�5 3.4286 � 10�7

Present FD (1st order jump condition) 1.2699 � 10�2 4.8724 � 10�3

Present collocation (1st order jump condition) 1.3622 � 10�3 3.2460 � 10�3

Present FD (2nd order jump condition) 7.8715 � 10�3 2.2626 � 10�3

Present collocation (2nd order jump condition) 4.1955 � 10�4 3.6900 � 10�5

Present tau (1st order jump condition) 4.9248 � 10�4 1.1441 � 10�4

Present tau (2nd order jump condition) 7.1999 � 10�5 8.5957 � 10�6
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f ¼ 1
2� r

¼ 1
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
pðx; yÞ ¼ 4r4 � 4r2 þ 3=4

¼ 4ðx2 þ y2Þ2 � 4ðx2 þ y2Þ þ 3=4
The error kENk1 is shown in Figs. 38 and 39 as a function of N. The order of current Chebyshev-tau scheme for the 2D
example and the comparison of accuracy can be found in Tables 2 and 3, respectively. It can be seen from the 1D and 2D
examples that tau methods seem to provide a higher accuracy and a smoother curve of error.
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4. Conclusions

A global description of discontinuous functions is proposed in this paper. By introducing the Heaviside function, a discon-
tinuous function can be expressed as the sum of a smooth function and a correction term related to the jump conditions. This
treatment enables us to use the spectral methods, which are originally developed for smooth problems, without incurring
Gibbs phenomenon. Finite difference and other methods can also be combined with this concept. Only minor modifications
are to be made to the original finite difference and spectral method and all correction terms are calculated explicitly. The
order of finite difference and spectral methods we developed in this paper is limited by the number of available jump con-
ditions. The accuracy of current Chebyshev collocation schemes are lower than those methods using special treatment near
discontinuous points (e.g., [23,37]) but still comparable to LeVeque and Li’s scheme [20]. However, Chebyshev-tau methods
seem to have a higher accuracy. For some special cases where all jump conditions are known, our spectral methods can re-
cover spectral accuracy.
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The concept of global description proposes a new aspect to understand discontinuous functions and provides more flex-
ibility in constructing schemes for discontinuous problems. Although the spectral methods proposed in the present paper do
not reveal a significant accuracy improvement and the accuracy improvement may rely on higher order jump conditions (it
is possible for some differential equations as evidenced in [21,36]), spectral methods may still be preferable for some other
reasons even if the exponential convergence properties are diminished, for example, the ease of implementation in two or
three dimensions and the advantages in handling certain boundary conditions (e.g., Fourier spectral methods for periodic
boundary conditions) as mentioned in [40]. Besides, study on the convergence behavior of other schemes based on the cur-
rent global description concept may also be valuable.
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